Dušan Polanský
Hned v úvodu slibuji, že vás nebudu otravovat žádnými složitými výpočty, spíš mi půjde o takovou malou úvahu kolem výše mezd. Jak je známo, od 1. 1. 2024 vláda garantuje zákonem učitelům plat ve výši 130 % průměrné mzdy z předchozího roku. Přesnější pojem než mzda za rok je celkový příjem za rok, ale já budu v dalším používat kvůli zjednodušení výpočtů v příkladech pojem mzda, statistická pointa výkladu se tím nezmění. Kdo si potrpí na legislativní přesnost tak příslušná formulace zní: Celková výše peněz na platy učitelů musí podle schválené úpravy činit od příštího roku „v měsíčním průměru na jeden úvazek učitele nejméně 130 procent průměrné hrubé měsíční nominální mzdy na přepočtené počty zaměstnanců v národním hospodářství“.
Vůbec nechci hodnotit, zda těch 130 % průměrné mzdy je správně, nesprávně nebo zda se podobné zákony v našem dost nestabilním světě mají přijímat, ale jde mi jen a jen o pojem průměrné mzdy. Je šťastné tento pojem u mezd používat?
Průměrná mzda je aritmetický průměr všech mezd vyplácených v určitém období, kupříkladu za měsíc, půlrok či rok. Jak víme, aritmetický průměr (AP) je součet všech hodnot vydělený počtem hodnot. Kupříkladu AP hodnot 2, 3, 5 a 10 je 20/4 = 5.
Matematici mají AP ve veliké oblibě už jenom kvůli tomu, že když spočtenou hodnotu AP vynásobíte počtem hodnot dostanete stejnou sumu, jako když jste sečetli všechny hodnoty, v našem příkladu 5 × 4 = 20. Průměrů známe více, např. geometrický, harmonický, klouzavý, vážený průměr. Ovšem nás tyhle jiné průměry teď nezajímají. Nás bude zajímat jiný veliký konkurent AP v případě statistiky mezd, a to medián.
Medián je hodnota, která se nachází přesně uprostřed ve skupině vzestupně seřazených hodnot. To znamená, že polovina posuzovaných hodnot je menších než medián a druhá polovina je větších než medián. Kupříkladu když máme hodnoty 1, 2, 3, 4, 5, 6, 7, 8, 9, tak medián je 5, protože 4 hodnoty jsou menší než 5 a 4 hodnoty jsou větší než 5. Když je hodnot sudý počet, tak obvykle se medián vypočítá jako AP dvou hodnot, té uprostřed a té za ní. Kdybychom k naší řadě přidali ještě hodnotu 10, tak medián by byl (5 + 6)/2 = 5,5. Malá chyba krásy je, že taková hodnota se v naší řadě se sudým počtem hodnot nevyskytuje. Ale pokud jde o AP to platí téměř vždy.
Při našem povídání pro větší názornost použijeme ještě jednu charakteristiku ze statistiky, a to směrodatnou odchylku (SO). Je to průměrná odchylka od AP, neboli vyjadřuje míru rozptylu sledovaných hodnot od AP. Počítá se trochu složitěji, ale zase ne až tak těžko. Představte si, že jsem pivař (což není pravda, jsem spíš na víno) a vypiju v týdnu průměrně každý den 2 piva, tedy celkem za týden 14 piv. Tedy pokud ve vzorovém týdnu tyhle hodnoty dodržím, tak intuitivně tušíme, že AP = 2 a SO = 0, jelikož jsem se od AP neodchýlil ani jeden den nahoru ani dolu. Teď si představte že je týden, kdy v pondělí až v sobotu vypiju jenom 1 pivo, a v sobotu na tahu s kamarády 8 piv, čímž také dodržím výslednou týdenní konzumaci 14 piv. Jaká bude teď SO? V pondělí až sobotu je odchylka od AP (ten je 2) -1 a v neděli 6. Umocním hodnoty -1, -1, -1, -1, -1, -1 a 6 na druhou, sečtu jejich mocniny, dostanu číslo 42, toto číslo vydělím 7 (počet dnů v týdnu), dostanu 6, a toto číslo odmocním, a vyjde nám SO = 2,449.
Abych ukázal, proč se spíš kloním k tomu, aby se při udávání výše mezd spíš používal důsledně medián než AP, představíme si dvě firmy o 9 pracovnících, označíme si je jako A a B. U každé si uvedeme součet jejich mezd, AP, SO, medián a rozdíl: AP - medián. Pokud jde o to, v čem je mzda udaná, či v Kč, Librách, v Euru či nějakých násobcích není vůbec z našeho pohledu důležité. Pokud máte s tím problém, vynásobte si pro větší názornost mzdy zde uvedené číslem 1000 a jako peněžní jednotku si představte 1 Kč. Dopadlo to takto:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
20 | 20 | 20 | 25 | 25 | 30 | 30 | 40 | 60 |
Suma mezd: 270 AP = 30 SO = 12,25 Medián = 25 AP - medián = 30 - 25 = 5
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
20 | 20 | 20 | 25 | 25 | 35 | 35 | 50 | 130 |
Suma mezd: 360 AP = 40 SO = 33,17 Medián = 25 AP - medián = 40 - 25 = 15
Co lze z těchto dvou teoretických příkladů vyčíst?
Příklady jsem sice vymyslel, v reálu asi takové dvě firmy jen tak nenajdeme, ale poměrně přesvědčivě statisticky ukazují nevhodnost uvádění průměrné mzdy jako ukazatele charakterizujícího na globální úrovni výši pobírané mzdy u většiny pracovníků. Medián se jeví daleko přesvědčivější a více odráží na globální úrovni mzdovou realitu většiny pracovníků. A ještě něco, tyhle skutečnosti vám potvrdí každá mzdová účetní soukromé firmy. A to je vše.
V Brně 6. ledna 2024.
Poznámka z 7. dubna 2024. I při stanovování věku odchodu do důchodu je nutno být dost opatrný. Zatím se vychází z aritmetického průměru věku dožití, tedy např. za rok se sečte věk všech zemřelých a vydělí se počtem zemřelých, to stejné se udělá u mužů i žen. Nechme teď bokem profesní aspekt, tedy závislost odchodu do důchodu podle profese. Představme si pro jednoduchost, že průměrný věk dožití mužů a žen je stejný, ať je to 78 let. A nechť věk odchodu do důchodu je stanoven na 65 bez ohledu na vykonávanou profesi. Tedy v našem příkladu si průměrný důchodce užívá důchodu 13 let.
Zkusme se na stejný příklad podívat přes medián. Medián je hodnota, která se nachází přesně uprostřed ve skupině vzestupně seřazených hodnot, tedy v našem příkladu by věk dožití určitě nebyl 78 let, ale např. 74. Je to dáno tím, že na jedné straně jsou tací, co se bohužel nedožívají vyššího věku nebo se důchodu dokonce vůbec nedožijí, a tahle skupina je poměrně veliká, na druhé straně jsou ti, co se dožívají poměrně vysokého věku, např. v našem příkladu ať jakýsi průměrný pomyslný věk, těch co se dožívají vysokého věku, tedy nad 78 let, ať je 85 let. Tedy už ne průměrný, ale mediánový důchodce, tedy přesně polovina důchodců žije v důchodu pouze 9 let. Celá druhá polovina více než 9 let, někteří z této skupiny dokonce výrazně více než 9 let.
Tímto příkladem, chci upozornit na skutečnost, že uvádět hodnotu, která vyjadřuje průměrnou dobu života v důchodu, je dost ošemetná informace. Přinejmenším pro celou polovinu důchodců, a to není jistě málo. Nebo si myslíte, že to nestojí za řeč?
Jaké je z tohoto pohledu nejreálnější fungování důchodového systému? Je to docela prosté, jenom chtít. Do důchodu by se šlo v 62 s tím, že buď pobíráš důchod, nebo mzdu. Za každý odpracovaný rok v důchodu 5 % navýšení důchodu z původní výměry důchodu. Původní výměra by se valorizovala.
Poznámka z 22. července 2024. S použitím SO je potřeba být někdy trochu opatrný. Pokud jsme místo aritmetického průměru coby charakteristiky polohy zvolili medián, je vhodnější coby charakteristiku variability zvolit místo SO mezikvartilovou odchylku Q(x). Co to je? Spočte se takhle: Q(x) = 1/2 (Q3 - Q1). Q3 je medián z druhé části souboru hodnot od původního mediánu po poslední hodnotu. Q1 je medián z první části souboru hodnot, tedy od první hodnoty do původního mediánu. Dělá se to proto, že SO je obvykle silně ovlivněna extrémní hodnotou. V našem příkladu s B firmou by tedy zmíněné hodnoty byly: Q1 = 20, Q3 = 35 a Q(x) = 1/2 (35 - 20) = 7,5. V případě firmy A: Q(x) = 1/2 (30 - 20) = 5.
Poznámka z 30. záčí 2024. Medián navíc více osvětluje platové rozdíly v soukromém a státním sektoru. Odboráři v státním sektoru se rádi ohání průměrnou mzdou, a dobře ví proč. Kdyby se argumentovalo s mediánem nedopadlo by to pro jejich zaměstnance statisticky dobře. Proč? Protože medián v soukromém sektoru by vyšel o dost menší než v sektoru státním, rozdíl by byl větší než u průměrné mzdy (průměrná mzda v státním sektoru je vyšší než v soukromém). Je to proto, že v soukromém sektoru významný podíl na výši průměrné mzdě totiž mají vysoké platy managementu. Sice ani v státním sektoru nejvyšší vedoucí pracovníci nejsou na tom vůbec zle, ale přece jenom často výši platů vedoucích pracovníků v soukromém sektoru nedosahují. Ale něco za něco, v státním sektoru mají to svoje vždy bez nervů a v pohodě jisté. Bohužel ale tohle mediánové porovnání platů v soukromém a státním sektoru nám statistici neposkytují. Snad někdy příště.